NASA's Swift Monitors Departing Comet Garradd

An outbound comet that provided a nice show for skywatchers late last year is the target of an ongoing investigation by NASA's Swift satellite. Formally designated C/2009 P1 (Garradd), the unusually dust-rich comet provides a novel opportunity to characterize how cometary activity changes at ever greater distance from the sun.

A comet is a clump of frozen gases mixed with dust. These "dirty snowballs" cast off gas and dust whenever they venture near the sun. What powers this activity is frozen water transforming from solid ice to gas, a process called sublimation. Jets powered by ice sublimation release dust, which reflects sunlight and brightens the comet. Typically, a comet's water content remains frozen until it comes within about three times Earth's distance to the sun, or 3 astronomical units (AU), so astronomers regard this as the solar system's "snow line."

"Comet Garradd was producing lots of dust and gas well before it reached the snow line, which tells us that the activity was powered by something other than water ice," said Dennis Bodewits, an assistant research scientist at the University of Maryland, College Park, and the study's lead investigator. "We plan to use Swift's unique capabilities to monitor Garradd as it moves beyond the snow line, where few comets are studied."

Comets are known to contain other frozen gases, such as carbon monoxide and dioxide (CO and CO2), which sublimate at colder temperatures and much farther from the sun. These are two of the leading candidates for driving cometary activity beyond the snow line, but phase transitions between different forms of water ice also may come into play.

C/2009 P1 was discovered by Gordon J. Garradd at Siding Spring Observatory, Australia, in August 2009. Astronomers say that the comet is "dynamically new," meaning that this is likely its first trip through the inner solar system since it arrived in the Oort cloud, the cometary cold-storage zone located thousands of AU beyond the sun.

Comet Garradd was closest to the sun on Dec. 23, 2011, and passed within 118 million miles (1.27 AU) of Earth on March 5, 2012. The comet remains observable in small telescopes this month as it moves south though the constellations Ursa Major and Lynx.

Although Swift's prime task is to detect and rapidly locate gamma-ray bursts in the distant universe, novel targets of opportunity allow the mission to show off its versatility. One of Swift's instruments, the Ultraviolet/Optical Telescope (UVOT) is ideally suited for studying comets.

For more information visit http://www.nasa.gov/mission_pages/swift/bursts/comet-garradd.html

Cassini Successfully Flies over Enceladus

These raw, unprocessed images of Saturn's moons Enceladus and Tethys were taken on April 14, 2012, by NASA's Cassini spacecraft.

Cassini flew by Enceladus at an altitude of about 46 miles (74 kilometers). This flyby was designed primarily for the ion and neutral mass spectrometer to analyze, or "taste," the composition of the moon's south polar plume as the spacecraft flew through it. Cassini's path took it along the length of Baghdad Sulcus, one of Enceladus' "tiger stripe" fractures from which jets of water ice, water vapor and organic compounds spray into space. At this time, Baghdad Sulcus is in darkness, but that was not an obstacle for another instrument, the composite infrared spectrometer, which can see features by their surface temperatures and which also took measurements during this flyby.

As soon as daylight passed into the spacecraft's remote sensing instruments' line of sight, Cassini's cameras acquired images of the surface. The wide-angle-camera image included in the new batch, taken from around the time of closest approach, has some smearing from the movement of the spacecraft during the exposure, but still shows the surface in vivid detail.

Cassini's cameras also imaged Enceladus' south polar plume at a high phase angle as the satellite appeared as a thin crescent and the plume was backlit.

After the Enceladus encounter, Cassini passed the moon Tethys with a closest approach distance of about 5,700 miles (9,100 kilometers). This was Cassini's best imaging encounter with Tethys since a targeted encounter in September 2005. The 2005 encounter, with a closest approach distance of about 930 miles (1,500 kilometers), provided the images of Tethys with the best resolution and captured views of the side of Tethys that faces Saturn in its orbit. This new encounter examined the opposite side of Tethys, providing some of the highest-resolution images of the side that faces away from Saturn. Cassini acquired a 22-frame mosaic of this side, which features the large impact basin named Odysseus. Scientists will use these new data in conjunction with images from previous encounters to create digital elevation maps of the moon's surface.

For more information visit http://www.nasa.gov/mission_pages/cassini/whycassini/cassini20120416.html

NASA GRACE Data Hit Big Apple on World Water Day


To highlight declines in the world's groundwater supplies, a new visualization of Earth's groundwater reserves, created in part with space data from the joint NASA/German Aerospace Center (DLR) Gravity Recovery and Climate Experiment (GRACE) mission, debuted on New York's Times Square on March 22, International World Water Day.

The 30-second animation, titled "Visualizing Seasonal and Long-term Changes in Groundwater Levels," will be on display several times each hour through April 22 on Times Square's massive Thomson Reuters and NASDAQ digital signboards. Viewers of the interactive animation are invited to use their mobile devices to submit their city and add a graph to the sign. The animation can be viewed at: http://vimeo.com/user10042778 .

Netherlands designer Richard Vijgen developed the animation using GRACE data analyzed by professor Jay Famiglietti, director of the UC Center for Hydrologic Modeling at the University of California, Irvine; and from United States Geological Survey data supplied by Leonard Konikow. Vijgen was the winning entry in an international design visualization competition sponsored by the organization HeadsUP!, in collaboration with Visualizing.org. Founded by digital media artist Peggy Weil, HeadsUp! challenges designers to visualize critical global issues and create a shared sign for the public square.

Groundwater is a critical, but often overlooked, natural resource. According to a U.N. report, more than 1.5 billion people around the world depend on groundwater for their drinking water. It comes from the natural percolation of precipitation and other surface waters down through Earth's soil and rock, accumulating in cavities and layers of porous rock, gravel, sand or clay. Groundwater levels respond slowly to changes in weather and can take months or years to replenish once pumped for irrigation or other uses.

Famiglietti's analyses show that groundwater is being depleted at alarming rates in many of the world's major aquifers. "The GRACE data set is exciting, because it gives us the first global pictures of Earth's changing freshwater," he said.

The twin GRACE satellites, which celebrated their 10th year in orbit this week, measure minute changes in Earth's gravity field by measuring micron-scale variations in the separation between the two spacecraft, flying in formation 137 miles (220 kilometers) apart in low Earth orbit. These variations in gravitational pull are caused by local changes in Earth's mass. Masses of water, ice, air and solid Earth can be moved by weather patterns, seasonal change, climate change and even tectonic events such as large earthquakes. GRACE was developed by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

For more information visit http://www.nasa.gov/mission_pages/Grace/news/grace20120322.html

Icy Moons through Cassini's Eyes


These raw, unprocessed images of Saturn's moons Enceladus, Janus and Dione were taken on March 27 and 28, 2012, by NASA's Cassini spacecraft.

Cassini passed Enceladus first on March 27, coming within about 46 miles (74 kilometers) of the moon's surface. The encounter was primarily designed for Cassini's ion and neutral mass spectrometer, which "tasted" the composition of Enceladus' south polar plume. Other instruments, including the Cassini plasma spectrometer and composite infrared spectrometer, also took measurements.

Before the closest approach of this encounter, Cassini's cameras imaged the plume, which is comprised of jets of water ice and vapor, and organic compounds emanating from the south polar region. Later, the cameras captured a nine-frame mosaic of the surface of the moon's leading hemisphere as the spacecraft left the moon.

After the Enceladus encounter, Cassini passed the small moon Janus with a closest approach distance of 27,000 miles (44,000 kilometers). The planet was in the background in some of these views.

Early on March 28, the spacecraft flew by Dione at a distance of 27,000 miles (44,000 kilometers) and collected, among other observations, a nine-frame mosaic depicting the side of the moon that faces away from Saturn in its orbit.

All of Cassini's raw images can be seen at http://saturn.jpl.nasa.gov/photos/raw/

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. NASA's Jet Propulsion Laboratory in Pasadena manages the mission for the agency's Science Mission Directorate in Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations team is based at the Space Science Institute in Boulder, Colo. JPL is a division of Caltech.

For more information visit http://www.nasa.gov/mission_pages/cassini/whycassini/cassini20120328.html